BIG GAME FISHING IN THE NORTHERN GULF OF MEXICO DURING 1991

Paul J. Pristas, Anna M. Avrigian, and Mark I. Farber
U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration
National Marine Fisheries Service
Southeast Fisheries Science Center
75 Virginia Beach Drive Miami, FL 33149

November 1992

BIG GAME FISHING IN THE NORTHERN GULF OF MEXICO DURING 1991

by

Paul J. Pristas, Anna M. Avrigian, and Mark I. Farber

U.S. DEPARTMENT OF COMMERCE
Barbara Hackman Franklin, Secretary

National Oceanic and Atmospheric Administration John A. Knauss, Under Secretary for Oceans and Atmosphere

National Marine Fisheries Service

William W. Fox, Jr., Assistant Administrator for Fisheries

November 1992

The National Marine Fisheries Service (NMFS) does not approve, recommend or endorse any proprietary product or material mentioned in this publication. No reference shall be made to NMFS, or to this publication furnished by NMFS, in any advertising or sales promotion which would indicate or imply that NMFS approves, recommends, or endorses any proprietary product or proprietary material mentioned herein or which has as its purpose any intent to cause directly or indirectly the advertised product to be used or purchased because of this NMFS publication.

This report ${ }^{1}$ should be cited as follows:
Paul J. Pristas, Anna M. Avrigian, and Mark I. Farber, 1992. Big Game Fishing in the Northern Gulf of Mexico During 1991. NOAA Technical Memorandum NMFS-SEFC-312, 16 p.

Copies may be obtained by writing:
National Marine Fisheries Service
Southeast Fisheries Center, Panama City Laboratory
3500 Delwood Beach Road
Panama City, FL 32408
or
National Technical Information Service
5258 Port Royal Road
Springfield, VA 22161

[^0]
INTRODUCTION

In 1991, the National Marine Fisheries Service (NMFS) began the 21st season of its Recreational Billfishing Survey in the northern Gulf of Mexico. The primary species involved are blue marlin, Makaira nigricans; white marlin, Tetrapturus albidus; sailfish, Istiophorous platypterus; swordfish, Xiphias gladius; and longbill spearfish, Tetrapturus pfluegeri. The Panama City, Florida, NMFS Laboratory has had jurisdiction over the billfish surveys in the northern Gulf of Mexico since 1971, providing information to develop indices of abundance and collecting biological and ecological data on this species group.

Data are acquired primarily by port samplers
conducting on-site interviews with recreational anglers fishing for billfishes at major ports from St. Petersburg, Florida to Port Isabel, Texas. Some anglers also provide data by voluntarily phoning or mailing information regarding their big game fishing trips (Appendix 1). Information derived from this study has been important to management decisions concerning this fishery resource. Our data analyses are generally summarized for three primary regions of the northern Gulf: northwestern, northcentral, and northeastern (Fig. 1). For continuity with historical data analyses, the northwestern Gulf (Texas) is divided into three sections: eastern (Freeport, TX to the Texas-Louisiana border), central (Port o'Connor to Corpus Christi), and southern (Port Mansfield to the Texas-Mexico border).

Figure 1. Primary sampling ports of the Recreational Billfishing Survey in the northern Gulf of Mexico.

CATCH AND EFFORT

Primary data collected during on-site dockside interviews and from contributed data reports, consist of catches (includes "boated", released, and tagged and released billfishes) by species, as well as the number of hours trolled (i.e., fishing effort). Also presented in this report for documentation purposes are related data on driftfishing (i.e., drifting dead bait down-rigged for swordfish). Because of the difference in fishing method and target species, however, these data are not included in the analyses of trolling effort.

A total of 23,798 hours of trolling effort were recorded
during the 1991 season (Table 1) by the port samplers and voluntary reporting. This amount of effort recorded in 1991 was slightly less (3\%) than the 24,602 hours recorded in 1990. Compared to 1990, only the northcentral region showed a slight increase (7\%) in effort. The northeastern and northwestern Gulf regions decreased 6\% and 10\%, respectively. The amount of recorded effort in 1991 was slightly (2\%) above the previous 20-year average (23,366 hours) for the northern Gulf.

Compared to the previous season, the decrease in reported catches during 1991 may have reflected the decrease in recorded fishing effort. Compared to the 566 billfishes

Figure 2. Percentage of billfishes boated vs. released in the northern Gulf of Mexico, 1991.
reportedly caught in 1990, the reported catch of 507 billfishes in 1991 (Tables 1 and 2) represents a decrease of 10%. Blue marlin accounted for 54% (273 fish), white marlin 29% (146 fish), and sailfish 17% (84 fish) of the catches. Four spearfish were also reported caught this season. An increasing number of billfishes are being released in recent years by sport anglers due to a genuine concern for conserving the resource and enactment of various federal and state fishing laws. On October 28, 1988, the Fishery Management Plan (FMP) for the Atlantic Billfishes went into effect.

Between 1988 and 1991 the percentage of released catches has continually increased from 51\% to 60\% to 66\% to 69\%, respectively. The 1991 percentage of releases increased from 65% to 73% for blue marlin, and from 49\% to 56\% for sailfish compared to 1990; while the percentage of releases for white marlin decreased from 75\% to 68\% (Fig. 2). For all billfishes combined, the 1991 percentage of releases increased from 72% to 76% in the northwestern Gulf and from 75\% to 88\% in the northcentral Gulf compared to 1990. The percentage of releases in the northeastern Gulf decreased from 61\% in 1990 to 53\% in 1991 (Fig. 2).

For documentation purposes, 831 hours of driftfishing activity were recorded in 1991. This was an increase of 29% over the 646 hours recorded the previous year. One blue marlin, one sailfish, and six swordfish were reported caught
in conjunction with this fishing effort. All were reportedly released except for four swordfish.

INDICES OF RELATIVE ABUNDANCE

The number of fish Hooked Per Unit of Effort (HPUE), where effort represents hours of trolling, is considered as our best estimate of apparent relative abundance. The reported numbers of fishes hooked divided by the number of hours trolled (i.e., fishing effort) is used for our HPUE indices. Figure 3 shows HPUE measurements for yearly relative abundances of marlins and sailfish and the overall average for the 21-year period of this study (1971-1991).

For blue marlin, the 1991 HPUE (0.021 fish/hour trolling), remained the same as in 1990, equalling the 1978 historic low (Fig. 3). Consequently, the 1991 value remained 19% below the 21 -year average rate (0.026). Compared to 1990, HPUE's for blue marlin in the northeastern and northwestern Gulf regions had decreased from 0.017 to 0.016 , and from 0.033 to 0.024 , respectively. Conversely, in the northcentral Gulf the HPUE increased from 0.021 to 0.031 . The low HPUE rate for blue marlin has continued since 1987.

In 1991, the HPUE (0.010) for white marlin was the lowest recorded during the 21 years of this study (Fig. 3). This resulted in a 21 -year average HPUE of 0.035 . Compared to 1990 by region, the HPUE's for

Figure 3. Numbers of billfishes hooked-per-hour-trolling (HPUE) in northern Gulf of Mexico, 1971-1991. Straight line indicates 21 -year average of each category.
white marlin decreased in the northeaster Gulf from 0.018 to 0.011 , increased in the northwestern Gulf from 0.013 to 0.014 , and remained the same (0.006) in the northcentral Gulf. The decrease in the 1991 HPUE for white marlin continued the general trend occurring since 1983.

The HPUE of 0.004 for sailfish increased slightly from the historic low of 0.003 in 1989 and 1990 (Fig.3). The comparatively low HPUE has decreased the 21-year average to 0.014. Compared to 1990, the northeastern region's HPUE
for sailfish remained the same (0.004), the northcentral region's decreased from 0.001 to 0.000 , and the northwestern region's HPUE increased substantially from 0.008 to 0.014 .

The low HPUE's for marlins with only a slight increase for sailfish resulted in the lowest combined annual HPUE (0.036) during the 21-year period of this study (Fig.3). The last several season's low HPUE's for all billfishes combined decreased the 21-year average to 0.075. With few exceptions, the average annual HPUE value has decreased since 1980. Be-
tween 1971 and 1980, the 10 -year overall annual average HPUE was 0.092. It appears that factors other than recreational fishing mortality may be adversely affecting these resources (i.e., billfishes), as the percentage of released billfishes has been increasing in the recreational fishery in the northern Gulf for the past several years.

WEIGHTS

Size data, along with the other data analyses, can provide information about the health or general status of a fishery and may be used in fishery management decisions. Federal and state size regulations, as well as size limits imposed by many tournaments have influenced the size of fishes brought to the docks, which biased actual size composition estimates of the landings. However, length and weight data, as recorded from actual landings, do provide information about the size composition of the catches. Table 3 includes weight data recorded from all fishing methods (i.e., trolling, drifting, and live baiting). Figure 4 presents the 21-year average weight, the range (i.e., minimum and maximum weights), and the 50\% grouping (i.e., size range for 50% of the fishes) for marlins and sailfish.

Of the 68 blue marlin weights recorded during the season, two exceeded 600 lbs , the heaviest landed at South Pass, Louisiana (Table 3). The

Figure 4. Yearly weights (Lbs) with range (verti cal line), 50 percentite grouping indicate that 50\% of billfishes caught fell into range (between marks), and yearly average (horizontal line).
334.5 lb. av rage weight for this speci s in 1991 continued an increasing tr nd existing ov r the past several seasons, increasing the 21-year overall averag weight to a record 263.2 lbs (Fig. 4). These data r flect the minimum size limits imposed by tournaments, as well as federal and state size regulations. Mandatory releasing of small billfishes allows landings and measurements of only larger fishes, thus increasing the corresponding averag weight.

The weights of 42 white marlin were recorded during the season, with th largest (90.2 lbs) b ing reported from Mobile, Alabama (Table 3). Though this fish was more than 10 lbs heavier than the largest in 1990, the av rage weight decreased from 54.5 lbs in 1990 to 53.3 lbs. in 1991 (Fig. 4).

Figure 5. Number of billfishes hooked-per-hour-trolling (HPUE) and percent HPUE for various baits in Gulf of Mexico, 1991.

The 53.3 lb average weight for white marlin in 1991 was 1.0 lb heavier than the 21 -year overall average weight.

The weights of 33 sailfish were recorded during 1991 season (Table 3). The largest weighed in 1991 (69.6 lbs) was about 10 lbs less than the largest reported sailfish in 1990 (71.0 lbs). No sailfish weights were recorded at four ports: Mobile, AL; Grand Isle and South Pass, LA; and East Texas. The 1990 average weight (43.8 lbs) was slightly more than the 21-year overall average weight of 42.6 lbs (Fig. 4). The yearly overall average has varied from 38.3 to 42.6 lbs, remaining at 42.6 lbs since 1986.

BAITS

Information about various types of fishing baits and methods which may influence hook-up and catch rates can be important to fisheries managers. Changes in baits and methods could affect apparent relative abundance estimates. Prior to the late 1970's, slower trolling with natural baits was the predominant fishing method in the northern Gulf. since then, fast trolling with artificial baits (i.e., lures) has become the prevalent style of fishing for billfishes. The number of hours trolled and the HPUE for various baits fished in the Gulf of Mexico and its three
regions are presented in Table 4. The majority (85\%) of the reported fishing effort resulted from trolling only artificial baits. In descending frequency, the percentages of trolling effort were: both bait types simultaneously, 12\%; dead baits only, 3\%; and live baits only, less than 1\%. Since 1989, trolling only with dead baits accounted for the highest HPUE in the northern Gulf. However, when both baits were trolled simultaneously, artificial baits had the highest HPUE (0.019) in the northeastern region, the northcentral region (0.041) and for the overall northern Gulf (0.020). When fished independently of each other, dead baits accounted for 49\% of the HPUE in the northern Gulf (Fig. 5). When fished in conjunction with dead baits, artificial baits produced 61\% of the HPUE in the northern Gulf of Mexico.

FISHING AREAS

In order to provide information to participants in the recreational fishery for billfishes, "fishing charts" showing indices of low, mid, and high activity by 10: latitudinal and longitudinal blocks are presented in Figures 6-8 to depict this reported activity and its success. For consistency with previous reports, the indices are compiled by computing the numbers of billfishes raised-per-hour-oftrolling. Data are given for blocks in which 10 hours or more of trolling effort was reported throughout the season.

In the northeastern Gulf (Fig.6), fishing effort was reported over a slightly larger area in 1991 than in 1990 (108 vs. 105 blocks). A minor number of reports indicated some fishing occurred off the chart south of latitud $28^{\circ} 30^{\prime} \mathrm{N}$. This activity generally occurred during periods in which "good" blue water could not be located closer to shor . All three of the high value blocks were offshore of the 100-fathom curve. No billfishes were reported raised in 27\% (29 blocks) of the fished blocks.

Fishermen in the northcentral Gulf (Fig. 7) expanded their fishing area in 1991 by 18% to 71 blocks compared to the 60 blocks reportedly fished in 1990. The percentage of blank (i.e., no billfishes raised) blocks increased from 27% (16 blocks) in 1990 to 31\% (22 blocks) in 1991, while the percentage of high-value blocks decreased from 15\% in 1990 to 4\% in 1991. These data tend to support the decrease in catches reported earlier in this report.

In the northwestern Gulf (Fig.8), the reported fishing area decreased from 73 blocks in 1990 to 58 blocks in 1991. Reportedly high catches of sailfish near the inshore areas off Port Isabel, Texas, resulted in the high-value indices shown in that region of the northern Gulf. The area south of $27^{\circ} \mathrm{N}$ latitude had 24\% (8) blank blocks and 6\% (2) high-value blocks, while the area north of this latitude had 36\% (9) blank blocks and 4\% (1) high-value blocks.

RELATED OBSERVATIONS

1. The first reported billfish catch of the s ason came from D stin, Florida. On May 1st, the crew of th boat "Destiny" reported tagging and releasing a blue marlin.
2. For three consecutive years now, no "Grand slams" (i.e., catches of a blue marlin, white marlin, and sailfish on a 1-day trip) were reported during the season. The last reports of "Grand Slams" were in 1988 when two were recorded.

ACKNOWLEDGMENTS

The National Marine Fisheries Service's billfishing survey has rec iv d consid rable support from the recreational fishing community. Recreational fishery constituents have provided both indirect and dir ct assistance to assure a successful outcome of this study. This support is gratefully appreciated, and we thank those who helped (Appendix 1).

Survey efforts resulted in approximately 2,709 interviews during th 1991 season. For a job WELL DONE, we thank: Julie Callais, Grand Isle, LA; Wm. "Hank" Geier, Jr., South Padre Island, TX; Pam Heard, Port Aransas, TX; Richard Kersten, Destin, FL; Craig Martin, Pensacola, FL/Mobile, AL; and Joe Yurt, South Pass, LA.

Appendix 1. Persons and tournament organizations that actively assisted the NMFS Recreational Billfishing Survey in the northern Gulf of Mexico during the 1991 fishing season.

Name

George Ballard
Bay Point Invitational Tournament Blue Marlin Classic Tournament
East Pass Towers Tournament
Florida West Coast Championship Tournaments Fort Walton Beach Sailfish Club
Nancy Hanna
Jim Hubbard
Mobile Big Game Fishing Club/Ladies
New Orleans Big Game Fishing Club/Ladies Pensacola Big Game Fishing Club/Ladies Poco Bueno Tournament
Donnie Rozier
Sportsman's Blue Marlin Tournament Bonnie Yaste

Location
Pensacola, FL Panama City, FL P rdido $\mathrm{K} Y$, FL Destin, FL Madeira Beach, FL Ft. Walton Beach, FL Pensacola, FL Houston, TX Mobile, AL New Orleans, LA Pensacola, FL Port O'Connor, TX Pensacola, FL Orange Beach, AL Pensacola, FL

Table 2. Numbers of billfishes reported as Boated (Boat) or Released (Rel) without related effort in the northern Gulf of Mexico during 1991. All swordfish numbers were zero.

Gulf of MexicoArea	$\begin{aligned} & \text { Blue } \\ & \text { Marlin } \end{aligned}$		White Marlin		Sailfish		```Total All species```	
	Boat	Rel	Boat	Rel	Boat	Rel	Boat	Rel
Northeast cult	1..	0	1	\bigcirc	0	4	2.	4
St. Petersburg	0	0	0	0	0	0	0	0
Panama City	0	0	0	0	0	1	0	1
Destin	1	0	1	0	0	1	2	1
Pensacola	0	0	0	0	0	2	0	2
Mobile	0	0	0	0	0	0	0	0
Northcentral gult	O	0	0	0	\bigcirc	0	0	0
Grand Isle	0	0	0	0	0	0	0	0
South Pass	0	0	0	0	0	0	0	0
Northwest ault	4	5	0	3	0	2	4	10
East Texas	3	2	0	0	0	0	3	2
Central Texas	0	0	0	0	0	0	0	0
South Texas	1	3	0	3	0	2	1	8
Total allareas	5	5	1	3	0	6.	6.	14

Table 3．Number of billfishes and weights（pounds）recorded in the northern Gulf of Mexico during 1991．Data includes trolling， drifting and live baiting methods．

	St．Petersburg	Paname city	Destin	Pensacola	Mobile	Grand Isle	South Pass	East Texas	Central rexas	South Texas	All Areas combined
Blus．Muritin Kivilighed	Wink	\＆	\＄2．	10	12			\%		䔄	88
Largest	539.5	530.0	544.7	485.3	618.0	249.4	627.8	0	534.0	351.0	627.8
Smallest	238.0	248.0	191.8	187.0	194.8	209.8	201.8	0	173.6	164.0	164.0
Average	382.5	364.1	307.0	325.8	329.9	229.6	373.4	0	353.8	270.0	334.5
Thite and 1 n 	\#	葉	\＄		t．	0．	\％	\％．	$\stackrel{\pi}{\boldsymbol{\xi}}$	$\$$	
Largest	67.0	74.5	60.2	65.3	90.2	0	50.5	0	49.6	58.0	90.2
Smallest	44.0	46.0	39.6	41.8	46.8	0	50.5	0	49.6	49.5	39.6
Average	52.8	56.9	49.7	51.1	60.7	0	50.5	0	49.6	53.3	53.3
Salltish \＃nelinisd	10	4	3	3in	【． 0	9	0	0	$\ddot{3}_{3}^{3}$	${ }^{3}$	33
Largest	53.0	59.5	59.5	46.7	0	0	0	0	58.1	61.6	61.6
Smallest	32.0	31.8	31.8	34.8	0	0	0	0	45.3	33.0	31.8
Average	43.8	43.8	43.8	39.4	0	0	0	0	49.7	42.7	43.8
$\begin{aligned} & \text { Spear fishen } \\ & \text { \# neighed } \end{aligned}$	$\stackrel{i}{2}$	0	a	\％．	\％ 0	0	${ }^{\text {a }}$		0.	引	$\grave{\geqslant}$
Largest	48.0	0	0	0	0	0	0	0	0	0	48.0
Smal lest	48.0	0	0	0	0	0	0	0	0	0	48.0
Average	48.0	0	0	0	0	0	0	0	0	0	48.0

Table 4. Hours trolled and number of billfishes hooked-per-hour-of-trolling (HPUE) with various baits fished in the northern Gulf of Mexico, 1991.

Gulf of Mexico Area	Dead balt only		Live ball only		Artificial balt only		Both simultaneously		
	Hours trolted	HPUE	Hours trolled	HPUE	Hours trolled	hpue.	Hours: trolled	Matural mpue	Artiticiat hpue
Northeastern	595	. 045	69	. 043	9,979	. 030	2,446	. 011	. 019
Northcentral	32	. 125	10	. 000	6,998	. 038	73	. 000	. 041
Northwestern	60	. 183	28	. 000	3,134	. 049	374	. 032	. 021
All three combined	687	. 061	107.	. 028	2,111.	036.	2,893	013	. 020

[^1]Fishing
area bound by heavy black lines. Numbers of fishes raised-per-hour trolling:
$.001-.055 \ll$
$.056-.110 \ll$ $2.111<$

No fishes raised in blocks without symbols.

Figure 6. Numbers of billfishes raised-per-hour-of-trolling in the northeastern Gulf of Mexico by 10-min. blocks, 1991.

Fishing area bound by heavy black lines. Numb rs of fishes raised-per-hourtrolling:
$.001-.095 \ll$
$.096-.190 \ll$
$2 \quad .191$

No fighes raised in blocks without symbols.

Figure 7. Numbers of billfish s raised-per-hour-of-troliing in the northcentral Gulf f Mexico by $10-m i n$. blocks, 1991.

Figure 8. Numbers of billfishes raised-per-hour-of-trollinginthe northwestern Gulf of Mexico by $10-\mathrm{min}$. blocks, 1991.

[^0]: ${ }^{1}$ This publication is contribution MIA-92/93-20 from the Southeast Fisheries Science Center, Miami Laboratory, Migratory Fishery Biology Division.

[^1]: ${ }^{1}$ Natural bait includes both dead and live baits.

